首页 > 语文 > 教学设计 > 《分数除法》教学设计(通用11篇)

《分数除法》教学设计(通用11篇)

时间:2024-09-30

  在教学工作者开展教学活动前,可能需要进行教学设计编写工作,借助教学设计可以更好地组织教学活动。我们应该怎么写教学设计呢?以下是小编为大家收集的《分数除法》教学设计,仅供参考,希望能够帮助到大家。

  《分数除法》教学设计 1

1. 能根据分数乘法应用题的数量关系,理解并掌握分数除法应用题的数量关系,并用方程或除法正确列式解答。

2. 提高学生分析问题的能力。

3. 培养学生的审题习惯。

理解并掌握分数除法应用题的数量关系,并用方程或除法正确列式解答。

1. 教学工具:投影仪、多媒体播放设备。

2. 学生材料:彩色笔、纸张、计算器等。

(老师:同学们,你们平时有没有做过分数乘法的应用题呢?例如,一份稿件需要两页来装订,那么每一页大约占稿件总页数的多少比例呢?)

(老师:先请大家复习一下分数乘法的意义,然后思考一下分数除法的含义,你能用分数乘法解决哪些实际问题呢?)

(老师:接下来我们通过一个简单的例子来进一步理解这个问题.)

(老师:现在我们有一个小瓶子里有600毫升果汁,你想知道这个小瓶子里有多少个橙子吗?你们觉得怎样才能确定这个问题的答案呢?)

(老师:我们可以用同样的方法来解这个问题.)

(老师:假设这个小瓶子里有x个橙子,那么我们就可以列出以下的方程来进行解答.)

(老师:现在请大家完成练习十二第3题。请你先试着做一遍,然后再和你的同伴一起讨论你们的答案.)

(老师:同学们,今天我们通过学习分数除法的应用题,不仅了解了分数除法的数量关系,而且还学会了如何用方程或除法来解决问题。希望你们在以后的学习生活中能够继续运用这些知识,解决更多的生活中的实际问题!)

(老师:这就是今天学习的\"分数除法的实际问题\"!)

(作业:找出更多关于分数乘法和分数除法的实际问题,尝试自己编写相关的方程或算式.)

  《分数除法》教学设计 2

原内容:教学内容:使学生理解一个数除以分数的算理,掌握一个数除以分数的计算法则,正确计算一个数除以分数。

1. 让学生回忆一下分数的相关知识,如分数单位、分数的分子分母的关系等。

2. 引导学生思考如何运用这些知识来进行分数除法的计算。

3. 让学生通过小组讨论的形式,尝试列举出一些不同形式的分数除法问题,提高他们的实际操作能力。

1. 出示例题,让学生观察并思考:一道题需要哪些数量?为什么要这样列式?

2. 给学生展示题目,鼓励他们自己去解决。

3. 教师引导学生一步一步地解题,注意强调关键点,如:要先找出被除数,再求商。

三、教学整数除以分数的计算方法

1. 引导学生观察图,理解“小时行驶18千米”的含义。

2. 指导学生通过观察图,先求出2小时行驶的路程,再求出1小时行驶的路程。

3. 讲解分数乘整数的定义,引导学生通过例子验证,最后得出结论。

回顾整个教学过程,强调数学的基本原则,比如准确性和逻辑性。

1. 让学生自己尝试完成练习八第1、2题。

2. 提供足够的反馈,帮助学生改进。

1. 阅读教材第28~29页的内容。

2. 在练习本上完成练习八第3、4题。

  《分数除法》教学设计 3

1、让学生通过观察、探究,理解分数与除法的关系,并会用分数表示两个数相除的商。

2、让学生在过程中经历分数与除法的关系的探究过程,明确可以用分数表示两个数相除的商。

教学重点在于引导学生理解分数与除法的关系,而难点在于让学生真正掌握如何用分数表示两个数相除的商。

(1)复习分数的相关知识,如七十六是一半数,107表示107的分数单位。

(2)展示一个实例,问:“为什么5÷8=4÷9”能得到整数商?

(3)引导学生思考,如何用分数来解决问题?

(1)教师讲解例1中第二个问题的解决方法。

(2)引导学生通过讨论来深化对例1的理解。

(3)组织学生小组讨论,找出第二题与第一题的联系。

(1)教师讲解例2,提问:3个饼平均分给4个孩子,每个孩子分得多少个?

(2)通过让学生动手操作,理解分数与除法的关系。

(3)鼓励学生提出自己的疑问,培养他们的好奇心。

(1)回顾本节课的主要内容,强调分数与除法的关系。

(2)提问:通过这节课的学习,你有哪些收获?

布置一篇关于分数与除法关系的小论文,要求学生能够用学到的知识来解释一些实际生活中的例子。

  《分数除法》教学设计 4

  教学设想:

  1、注重考虑学生的知识起点,引发学生的认知冲突,让学生感知“用分数表示除法的商”的产生与发展的过程。

  2、充分利用学习材料,引导学生自主探索、交流合作、解决问题,从而实现数学的再创造,突出学习的自主性(感知→猜想→验证→概括→巩固),真正理解分数商的由来和所表示的意义。

  3、创设有效的问题情境,通过的学生猜想、说理、比较、概括等途径,突出教学重点,训练学生思维。

  教学目标:

  1、理解分数与除法的关系,知道如何用分数表示除法算式的`商。

  2、培养学生动手操作、合作交流和灵活运用知识的能力。

  3、通过学习,培养学生转化的数学思想和勇于探索的精神。

  教学重点:

  理解分数与除法的关系。

  教学难点:

  具体体会每一个商的由来和表示的含义。

  教学过程:

  一、感知关系

  1、问题:把6米长的绳子平均分成3段。每段长多少米?

  把1米长的绳子平均分成3段。每段长多少米?

  提问:怎样计算每一段的长度?商是多少?为什么?(画线段图)

  2、揭题、猜想关系:你能猜想一下分数与除法有着怎样的关系呢?

  板书:被除数÷除数=被除数除数

  二、探究关系

  1、验证关系

  (1)通过动手操作验证

  出示实例:把3块饼平均分给4个小朋友,每人分得多少块?

  列式质疑:3÷4=(师:商可能是几?为什么?你能否验证一下呢?)

  动手操作:剪拼纸圆,研究3÷4的商的由来和表示的含义。

  同桌交流:结合操作,请跟你的同桌说说3÷4的商是多少及其由来。

  反馈验证

  引导总结:把3块饼平均分成4份,每份是3块饼的14→1块饼的34,即34块。

  板书:3÷4=34

  (2)运用分数意义验证

  师:刚才是通过操作验证了3÷4=34,我们还能否通过其他途径来验证分数与除法的关系吗?

  出示例[2]:17分是几分之几小时?

  引导列式,借助钟面图,结合分数的意义求商(师:17÷60=?你是怎样想的?)

  1÷60=16017÷60=1760(小时)

  引导小结:分数与除法之间的关系,还可以用来转化名数。

  2、揭示关系

  师:通过刚才的验证,你得出了哪些结论?

  ①两个数相除,当商不是整数时,可以用分数来表示。

  ②被除数÷除数=被除数除数。

  师:我们已经通过实例验证了分数与除法的关系,你能结合具体算式将“分数与除法关系表”填写完整吗?

  联系

  区别

  除法

  被除数

  除号

  除数

  是一种运算

  分数

  师:如果用字母a、b分别表示被除数和除数,那么你能不能用字母关系式清楚地表示除法与分数的关系呢?根据学生回答板书:a÷b=ab

  引导推理:除法里有什么具体要求?为什么?那分数有没有要求呢?(引导从分数所表示的意义说明没有意义)板书:b≠0

  三、巩固关系

  1、强化分数与除法的关系。

  ①P、822

  ②(P、824)

  ③填上合适的分数8cm=()m13g=()kg15dm2=()m229分=()小时

  ④在括号里填上合适的数()÷()=58,35=()÷(),()()=()÷()

  2、比较练习,完成P、823

  ①学生选择条件,列式解答。

  ②引导比较:联系—都占总数的13,区别—能否用整数表示商

  四、总结提升

  师:分数与除法有些什么关系呢?我们一起来回顾一下。(生:……)

  质疑:58这个分数表示的意义是什么?还可以怎样理解?

  《分数除法》教学设计 5

1、出示数据:911135123

2、求出以上数的倒数:

1/9111513132

1、出示计算题:8×1434÷449÷3245÷447÷74

(8÷4)×(1434÷3245)×(449÷447)×(3245÷74)

2、练习三第5题可以用解方程的方法也可以用算术方法解决问题。

学生可能有不同的解决问题的“方法”,可以根据分数除以整数的意义进行解答。

也可以列出方程进行学生活动。

学生看清乘除法,然后独立计算,进行交流,除以一个数是乘这个数的倒数。

学生认真审题,用方程解决问题。

学生仔细审题,找出数量关系,列成计算然后进行交流。

13×9111×111。

34÷4=34×14=316。

解:设:校园总面积为xm²。

x=8800答:校园总面积为8800m²

学生计算掌握的可以,但是把分数乘法、分数除法应用题防在一起,有时还是混淆。这大概是不十分理解吧!

  《分数除法》教学设计 6

  单元教材分析

  本单元是在学生学习了整数乘除法以及解简易方程,学习了分数乘法知识的基础上,学习分数除法和比的初步知识.这些知识为学生学习分数除法打下了基础,学习本单元的知识对加深学生对计算方法的理解和提高学生的计算能力有很好的作用.教材内容包括:分数除法,解决问题,比和比的应用.这些知识都是学生进一步学习的重要基础,通过本单元的学习,学生一方面基本上完成了分数加,减,除的学习任务,比较系统地掌握了分数四则运算;另一方面又开始了比的初步知识的学习,为后面学习百分数和比例提供了基础.两方面的收获,都将在进一步的学习中发挥重要的作用.

  单元教学目标

  1、使学生在具体情景中,感知分数除法的意义,掌握分数除法的计算方法,能正确地用口算或笔算的方法进行分数除法的计算.

  2、使学生学分用分数除法来解决已知一个数的几分之几是多少,求这个数的实际问题.

  3、理解比的意义和比的基本性质,知道比与分数,除法之间的关系,能正确地求比值和化简比,能运用比的有关知识解决实际问题.

  4、让学生在具体生动的情景中感受学习数学的价值.

  单元教学重点

  1、分数除法的计算;

  2、分数除法问题的解答;

  3、比的意义和基本性质的理解与运用.

  单元教学难点

  1、理解分数除法计算法则的算理;

  2、比的应用.

  1、分数除法

  教学目标

  1、理解分数除法的.意义,指导并初步掌握分数除以整数的计算法则,能正确地计算分数除以整数。

  2、使学生理解整数除以分数的算理,掌握一个数除以分数的计算方法,能正确地进行一个数除以分数的计算,并培养学生的推理归纳能力。

  教学重点

  1、理解分数除法的意义与整数除法的意义相同。

  2、学会分数除以整数的计算法则,并能应用法则正确计算。

  3、一个数除以分数的算理。

  4、掌握分数除法的统一法则。

  教学难点

  1、学会分数除以整数的计算法则,并能应用法则正确计算。

  2、引导学生推导出整数除以分数的方法。

  3、对于一个数除以分数的算理的理解。

  第一课时分数除法的意义和分数除以整数

  教学过程:

  一、创设情景导入:

  同学们,前面我们学习了分数乘法,掌握了它的意义和计算法则,并用它解决了相应的实际问题。这节课开始老师将和你们一起去逐步探究分数除法的意义和计算法则,还要解决相应的实际问题。本节课我们先探究分数除法的意义和分数除以整数。

  二、新知探究:

  (一)分数除法的意义

  1、出示例1的教学挂图,让学生看图观察图意,指名口答图意和应该怎样列式.

  2、你能把上面的问题改编成用除法计算的问题吗?(学生独立思考,口答问题和列式)

  3、100g=110kg,你能将上面的问题改成用kg作单位的吗(引导学生将整数乘除法应用题改变成分数乘除法应用题)

  4、引导学生观察比较整数乘除法的问题和改写后的问题,分析得出整数除法和分数除法的联系以及分数除法的意义.

  5、练习:课本28页做一做.学生独立练习,订正时让学生说明为什么这样填.

  (二)分数除以整数

  1、小组学习活动:

  问题⑴把一张纸的45平均分成2份,每份是这张长方形纸的几分之几?

  问题⑵把一张纸的45平均分成3份,每份是这张长方形纸的几分之几?

  [活动要求]

  ①先独立动手操作,再在组内交流,

  ②讨论:通过折纸操作和计算,你发现了几种折纸方式,每种方式应怎样列式计算?你发现了什么规律?

  2、汇报学习结果:

  3、学生独立阅读教材

  4、归纳总结:这节课你们学会了什么?

  指导学生归纳出:分数除以一个不等于0的整数,等于分数乘以这个整数的倒数.

  三、巩固与提高

  ①把78平均分成4份,每份是多少?什么数乘6等于317?

  ②如果a是一个不等于0的自然数,13÷a等于多少?1a÷3等于多少?你能用一个具体的数检验上面的结果吗

  四、课后作业

  练习八第1、2、3题

  五、板书设计:

  分数除法的意义和分数除以整数

  例1.100×3=300(ɡ)1/10×3=3/10(㎏)

  300÷3=100(ɡ)3/10÷3=1/10(㎏)

  300÷100=3(盒)3/10÷1/10=3(盒)

  例2.4/5÷2=4÷2/5=2/54/5÷2=4/5×1/2=2/5

  4/5÷3=4/5×1/3=4/15

  《分数除法》教学设计 7

  一、说教材:

  1、掌握一个数除以分数的方法,并能正确计算。

  2、经历猜测、验证和归纳的过程,利用通分法计算的结果来推理出倒数法计算的过程。

  3、利用数形结合的方式,体会“转化”的数学思维方法。

  本课时的教学重点是运用计算方法正确进行计算,教学难点是理解一个数除以分数的计算方法。

  二、说教法和学法:

  本课时教师在教学中引导学生多看图观察,让学生经历猜测、验证和归纳的学习过程,使他们通过小组合作理解计算法则。

  三、教、学具准备。

  老师准备平均分成2份、3份和4份的圆纸片各4张,为学生准备一张练习纸,练习纸上画好三组没有平均分的圆纸片和书第27页上画一画的题目,把书中已画出的部分隐去,让学生亲自去画。

  四、说教学过程:

  1、复习铺垫,提供猜测基础。

  数学的学习离不开学生的经验基础和认知水平,为了让学生能正确理解本课时内容,我首先出示复习题1:“把12张饼平均分给4个小朋友,每个小朋友能分到几张饼?”学生根据前一课时所学方法分别用倒数法:12÷4=12×14=18(张)或者用通分法:12÷4=1×42×4÷4=18(张)通过列式计算。然后让学生说一说计算法则。

  接着出示题2:有4张同样大的饼,每2张一份,可分成多少份?

  在解答这两题的基础上,我提出问题:猜一猜4÷12等于几?由于受到上一课时的负迁移,部分学生仍然会用一个分数乘整数的倒数,算成:14×12=18,当然也可能会正确计算出结果。这时教师适时引导学生明白:判断一个猜想是否正确,需要通过科学地验证。

  这样的设计既为学生提供了学习新知识的经验基础,又能激起学生学习新知识的兴趣。

  2、验证猜想,理解计算过程。

  为了让学生更易理解题意,我把书中情境图改成具有生活气息的题目:有4张同样大的饼。每个小朋友吃12张,可分给几个小朋友吃?

  学生在练习纸上画出平均分的过程,并通过小组合作形式理解计算的过程。反馈时,教师引导学生用自己的话说清计算的思路,大部分学生会认为1张饼里有2个12,可以分给2个小朋友吃,4张饼就能分别8个小朋友吃,列式为:4÷12=4×2=8(个)。但这个过程并不能使学生自然过渡到对倒数法解题的理解,也就是说,学生通过4÷12=4×2=8(个)并不能理解4÷12可以用4×12的倒数来计算。这时我引进了通分法来计算:让学生观察示意图,理解4÷12就是求4里面含有几个12。而4就是82,根据学生以前知识结构,学生易于知道里有8个,最后根据学生的回答板书计算方法,4÷12=8÷12=8;追问:8是怎样算出来的?学生再次从计算的角度去思考:当两个分数的分母相同时,只需要用被除数的分子除以除数的分子就能求出商。

  由于通分法计算遵从了学生的认知水平,易于被学生尤其是学困生理解,而倒数法的\'意义很难被学生理解,但它简洁的计算过程又是今后学习不可或缺的。所以在教学中我把两种计算方法同时渗透,力求使让通分法成为理解倒数法的基石。

  这个教学过程完成了教学目标中的“让学生经历猜测、验证和归纳的过程,利用数形结合的方式,体会“转化”的数学思维方法。”

  3、大量练习,使用计算方法。

  数学的归纳过程不是把一个单一的数学现象,而是把一系列有相同特点的数学现象抽象成具有代表意义的符号特征,这就是建模过程。

  为了让学生能充分感知一个数除以分数的计算过程,我先出示了两道变式题:每个小朋友吃13张、14张饼,可分给几个小朋友吃?让学生模仿前面的例题进行实际操作,独立完成计算,教师巡视中加强学困生的辅导。

  由于前面几个除数的分子都是1,学生还不会去有意识地总结计算方法,仍会去想:只要看看一张饼里有几个这个分数,然后再用4去乘个数就行了。所以此时让学生归纳倒数法计算的方法还为时过早,为了使学生摆脱这种思维的束缚,真正从倒数的角度去观察和体会除数的变化,我又引进了变式题:每个小朋友吃23张饼,可分给几个小朋友吃?

  这时学生通过画图不再能看出一张饼可以分给几个小朋友吃了,引起学生认知经验的冲突。教师要求学生以合作的形式根据黑板上的板书去解答,并说一说:你是怎样思考的?由于倒数法计算很难说清算理,反馈时学生大多会借用通分法来说明:4÷23=123÷23=6。根据教学目标对通分法运用的定位(是为了使学生相信倒数法计算结果是正确的。),此时一定要让学生再次进行尝试:你们能用倒数法进行计算吗?边计算边观察:什么在变?什么不变?让学生独立计算,如果他们把被除数变成了倒数,肯定与通分法计算的结果不同,这时会自行修正,并体会老师提出的问题:什么在变?什么不变?

  接着出示书中“画一画”的练习,以同桌合作的方式,再次让学生体会借用图形来理解计算的优势,认识数形结合对数学解题的帮助,从而完成这三个教学目标。

  在大量计算的基础上,引导学生观察这些算式,然后用自己的话归纳出一个数除以分数的计算方法。

  4、观察比较,选择计算方法。

  让学生观察用通分法与倒数法的计算过程,体会倒数法在计算中简洁优美。但让学生体会:如果觉得通分法更适合,也可以使用通分法进行计算。

  《数学课程标准》提倡让不同的人在数学上得到不同的发展,对于数学认知水平较低的学生,允许他选择并不优化的方法,等知识水平有了进步再来运用其他更有利的方法进行学习。

  5、归纳总结,完善计算法则。

  通过前面多次的叙述和大量的计算,计算法则已是呼之欲出了,但学生的语言不够简洁扼要。这时我提出:看谁说的计算方法与数学家说的方法最接近?并说出前一部分:“一个数除以分数等于——”。让学生接着完成后面的部分。最后出示书中的计算方法,并对学生的归纳总结提出鼓励性评价——太棒了,你们大多数都有数学家的天份。

  五、说板书:

  板书内容较多,从学生的猜测到验证过程,一步步引导学生体会数学的学习方法,为学生选择自己喜欢的计算方法提供了直观可靠的依据。

  《分数除法》教学设计 8

  教学目标:

  1、理解分数除以整数的意义,掌握分数除以整数的计算方法,并能正确计算。

  2、通过实践活动和自主探究,培养学生动手能力及发现问题、解决问题的能力。

  3、通过一系列“自主探究----得出结论”的过程,体验其中的成就感,增强学生学习数学的自信心。

  教学重点:

  理解分数除法的意义,掌握分数除以整数的计算方法。

  教学难点:

  分数除以整数计算法则的推导过程。

  教学准备:

  多媒体课件、长方形纸等。

  教学过程:

  一、旧知复习,蕴伏铺垫

  复习时我安排了两道练习,引发学生记忆的再现,为学生选择原有知识中的有效的信息做好铺垫。

  1、展示问题:

  (1)什么是倒数?

  (2)你能举出几对倒数的例子吗?

  (3)如何求一个数的倒数?

  2、展示多媒体:笑笑和淘气去买白糖。

  问题1:他们每人买了两袋白糖,一共买了多少袋白糖?

  问题2:这些白糖一共重2千克,每袋白糖有多重?

  问题3:如果笑笑家15天吃完一袋白糖,那么平均每天吃多少千克?

  二、创设情境,理解意义

  展示多媒体:把一张纸的.47平均分成2份,每份是这张纸的几分之几?

  1、利用准备好的纸,先把纸平均分成7份,再涂出其中的4份,然后再将这4份平均分成2份,将其中1份涂色,最后看看涂上色的这部分占整张纸的几分之几。

  2、汇报

  三、大胆猜想

  学生通过操作,明白27是怎样得到的。那么到底应该怎样计算分数除法呢?让学生大胆猜想分数除法的计算方法。学生根据刚才的推理,很容易得出“分母不变,被除数的分子除以整数得到商的分子”的计算方法。

  四、再次探究

  1、学生很快发现有些算式是无法用以上结论计算出来的,如47÷3,分子4除以3是除不尽的。

  2、让学生动手分一分、涂一涂,然后再让他们进行小组交流。

  3、得出分数除法的计算方法:除以一个整数(零除外)等于乘这个整数的倒数。

  除以一个整数(零除外)等于乘这个整数的倒数。

  《分数除法》教学设计 9

本节课的教学目标是结合具体事例,让同学们了解并掌握分数除以整数的计算方法。此外,还希望通过教学活动,使同学们能克服困难,运用所学知识解决问题。

为了更好的帮助同学们理解分数除以整数的概念,老师准备了一些工具材料,包括小黑板、口算卡等。同时,也让同学们预先做了一些基础的口算练习,以便在课堂上进行更加直观和有效的演示。

课程开始时,老师先回顾了分数除以整数的过程,以此作为引入,引起同学们对新知识的好奇心。然后,老师又带领大家进行了简单的口算练习,从而熟悉分数除以整数的运算规则。最后,老师提出了一个问题“通过上述的口算练习,你们发现了一些什么?”这样可以激发学生们思考的兴趣,让他们更加积极地参与到学习中来。

接下来,老师会让同学们按照自己的想法,自由探索分数除以整数的问题,并提出相应的猜想。比如:“为什么同分母分数除以整数的商总是相等的?”“怎样才能计算出每个分数中的分子?”等等。这样的活动可以让学生们更深入地理解和掌握分数除以整数的知识。

在本节课结束后,老师会布置一些巩固练习的任务,让同学们在课后的生活中继续应用所学的知识。比如:“尝试用不同的方法解决一些分数除以整数的问题。”或者“计算出几个不同分母分数的商”。通过这些练习,可以让学生们更好地巩固分数除以整数的概念,同时也能提高他们的实践能力。

最后,老师会让同学们分享他们在本节课中学到了哪些新的知识,以及他们对于分数除以整数的理解有何改变。这样可以帮助学生们反思自己在这堂课中的学习效果,也可以让他们了解到自己的不足之处,以便在未来的学习中改正。同时,老师的鼓励也会激励学生们更加积极地参与学习。

  《分数除法》教学设计 10

  教学目标:

  1、使学生经历整数除以分数计算方法的过程,理解并掌握整数除以分数计算方法,通过比较,能正确地计算整数除以分数和整数除以分数的试题。

  2、使学生在探索除分数以整数计算方法的过程中,进一步体会分数除法的意义,体会数学知识间的内在联系,发展分析、比较、抽象、概括的能力。

  3、使学生在学习活动中,进一步感受数学学习的挑战性,体验成功的乐趣,增加学好数学的信心。

  教学重难点

  理解并掌握整数除以分数计算方法,通过比较,能正确地计算整数除以分数和整数除以分数的试题。

  教学过程:

  一、回顾整理,熟悉法则。

  1、口算。

  910÷3=47÷4=310÷1=35÷6=

  口答出答案,并说出得到答案的具体过程。分数除以整数:是用分数乘整数的倒数。

  2、梳理相关的知识。

  分数除以整数的计算法则:分数除以整数,只要用分数乘以整数的倒数。

  举例说说分数除以整数的\'意义:把910平均分成3份,每份是多少?

  二、激活记忆,引出课题。

  1、出示课件。

  幼儿园李老师把4个同样大的饼分给小朋友。

  每人吃2个,可以分给几个人?(口答答案和算式)

  每人吃1个,可以分给几个人?(口答答案和算式)

  每人吃12个,可以分给几个人?(口答答案和算式)

  板书:4÷12=8(个)

  2、观察算式,引出课题。

  观察算式,揭示课题——整数除以分数。

  三、探究算法,形成法则。

  1、交流得数8个人的想法。

  分一分,让学生动手分一分,体会8个苹果的由来;用算式表示4×2=8;比较算式4÷12=8和4×2=8,观察它们之间的联系,形成整数除以分数的算法,4÷12=4×2=8。

  2、变换数据,增加感性认识。

  每人吃13个,可以分给几个人?每人吃14个,又可以分给几个人?

  先列算式,再在图中分一分得出结果,最后把算式写完整。

  4÷13=4×3=12(个)

  4÷14=4×4=16(个)

  3、出示课件

  有1根2米长的绳子

  (1)截成每段12米,可以截几段?

  (2)截成每段13米,可以截几段?

  (3)截成每段长23米,可以截几段?

  列出算式;在图中分一分,写出结果;思考计算方法,形成法则后再计算。

  4÷23=4×32=6(段)

  4、交流,形成计算法则。

  小组交流整数除以分数的计算法则,再班级交流,形成整数除以分数的计算法则:整数除以分数,只要整数乘分数的倒数。

  四、巩固练习,形成技能。

  1、完成练一练。

  12÷23=12×()()9÷67=9×()()

  10÷25=8÷23=3÷67=12÷87=

  2、8÷67512÷3

  除以一个数(0除外),等于乘这个数的倒数。

  3、课堂作业。

  6÷1423÷1549÷2383÷413÷3456÷1437÷757÷75

  4、1壶水可以装几杯?

  五、课堂总结

  本节课你有什么收获?

  教学反思:

  1、创设生活情境:

  数学知识来源于生活。通过创设幼儿园的老师分饼的生活情境来激发学生对知识的求知,增强学生的探索欲望,从而感悟学习数学的意义和必要。

  2、注重自主探索:

  学生有了知识的求知欲望后,赶紧让他们在小组内自主探索,借助圆片和图形语言理解理解整数除以分数的意义。通过观察,比较,思考与讨论,自主发现知识的内在联系,体会\"除以分数\"与\"乘这个数的倒数\"之间的关系。

  3、经历知识的形成:

  数学的学习过程注重学习的效果,更注重知识的学习过程。于是,我让学生通过自己的操作猜想整数除以分数的计算方法,并借助图形语言来验证知识的形成,如4÷12=8是怎样得出学生就能借助图形语言自己探索出每张分了2个12,4张就有8个12。从而培养学生学习数学的能力和逻辑推理能力,体会数学知识的严密性,还让学生明白了知识或真理是能接受实践的验证的,为以后同学们的学习猜想提供了很好的学习方法.

  4、练习循序渐进:

  设计练习时,我在算一算里安排有层次的计算,让学生先算简单的不需要约分,再算需要约分的,最后算要化成带分数的算式,满足了不同的学生有不同的收获。然后把所学的知识回归生活,解决实际问题。

  《分数除法》教学设计 11

  【教学目标】

  1、借助实际操作和图形语言,理解一个数除以分数的意义和基本算理。

  2、掌握一个数除以分数的计算方法,并能正确的计算。

  3、培养学生乐于交流、喜欢数学的情操,感受数学来源于生活。

  【教学重点】

  一个数除以分数的计算法则推导过程。

  【教学过程】

  课前谈话:

  《皇帝内经》中说春天是一个生发的季节,对于你们小孩子来说,要多运动才能长高个,那么春天还是一个美容的季节,爱美的女士们在这个季节要注重皮肤护理,多做面膜多补水。春天还是一个开始减肥的最佳季节,夏天可以穿漂亮的衣服,美美的。和老师聊天长知识吧?老师希望你们像我一样,多留心观察生活,积累生活经验。

  一、课前导入

  昨天毕老师问我,夏天马上到了,有没有一种快速减肥的方法?于是我给毕老师介绍了一款素食减肥营养饼。这素食减肥营养饼,胖子吃了能变瘦,瘦子吃了能变壮,于是我给办公室几个老师限量赠送四张饼,并制定了饮食计划。孙老师每天吃2张,白老师每天吃1张,毕老师每天吃半张,袁老师每天吃四分之一张,听到这里,你想知道什么?

  生1:谁每天吃最少?(这都知道了)

  生2:他们能吃几天?(太棒了)

  二、新知探究

  (一)探究整数除以分数

  1.下面请同学们结合学习指南,完成学习单上第一部分内容。

  指名读学习指南。(附:学习指南)

  1、独立思考:

  (1)分一分:把分饼的过程用算式记录下来。

  (2)想一想:结合分饼的过程,总结算法。

  2、合作交流:与组员分享自己的想法。

  师:明白学习指南的要求了吗?现在开始。(学生完成,教师巡视抽取样本)

  (学生独立完成学习单,时间3分钟。学生小组讨论时间2分50秒。)

  2.组织汇报:

  师:请你结合分饼过程说一说算式中每一个数字的意义。

  生1:第一个算式:4÷2=2,4表示4张饼,每天吃2张,2表示能吃2天。

  第二个算式:4÷1=4,4表示4张饼,每天吃1张,4表示能吃4天。

  第三个算式:4÷=4×2=8张饼,每天吃这张饼的二分之一,每张饼分两份,一张饼吃两天,4乘2,表示吃8天。

  第四个算式:4÷=4×4=16张饼,每天吃这张饼的四分之一,每张饼分四份,一张饼吃四天,4乘4,表示吃16天。

  师:你说的太棒了,我还想请你再说一说,算式中4乘2和4乘4中的2和4在图中表示什么?

  生:2表示每张饼分成2份,一张饼吃2天,4张饼可以吃8天,4表示4分之一的倒数,代表一张饼吃4天,4乘4等于16天。

  师:太棒了,给她点掌声。这个同学解释了2遍,我相信你们一定能听懂。

  这两个算式是整数除以分数,通过这两个算式的计算过程你发现了什么?

  生:一个数除以另一个数等于一个乘这个数的倒数。

  师:一个数和另一个数我们用整数除以分数代表更准确些。

  观察这四个算式有什么相同点和不同点。

  生:他们每人都有四张饼

  师:这是从表象上看,我们可以算式更深层次去分析。前两道题是整数除以整数的除法算式,后两道是整数除以分数的\'除法算式,他们都是求4里面有几个除数。也就是说整数除法算式和分数除法算式意义有什么关系?

  生:是不是可以把分数除法转化为分数乘法?

  师:no,我是说意义上,前两个和后两个算式都是在求4里面有几个除数,也就是说整数除法意义和分数除法意义有什么关系?就两个字。

  生:相同

  师:有什么不同点?

  生:以1为分界线,1往上,商比被除数小,1的话,商和被除数相等,1往下,商比被除数大。

  师:说的不错,但是就以这两个题,其实我们在找不同点的时候,可以从计算方法上去分析。前两道整数除以整数除法你是怎么计算的,后两道整数除以分数你是怎么计算的?

  生:整数除以整数直接除,整数除以分数把分数变成它的倒数。

  师:说的特别好,掌声送给他。奖励20分当家币。

  (二)探究分数除以分数

  演算法验证

  师:刚才我们结合分饼的过程掌握了整数除以分数计算方法,那么这种方法针对分数除以分数也同样适用吗?我们来看这道题,(÷)谁会算?

  生:÷,我打算把变成倒数,用乘,3和9约分,4和8约分,最后等于。

  师:你是利用整数除以分数计算法则来计算分数除以分数的,但是这只是一个猜测,没有说服力,我们需要验证,怎样来验证分数除以分数也可以转化为分数乘法来计算?大家想,我如果我们用刚才简单的分饼初级操作来验证力不从心。老师给大家介绍一种新的方法,叫做演算法。演算法是你经过深入学习数学常用到的一种方法。根据知识的新旧承接,利用旧知识迁移、转化,算出结果,要想用演算法验证整数除以分数同样适用于分数除以分数需要用到哪些旧知识?

  生:商不变的性质

  师:对,你怎么这么聪明!你怎么想到的?

  生:两个数互为倒数,相乘是1,乘等于1,所以除以,用乘。

  师:还需要用到哪些知识?提示:分数除法就要用到分数与除法的关系?

  生:a÷b=b分之a,b不等于0

  师:太棒了,商不变的性质用文字说明一下吗?

  生:被除数和除数同时乘或除以不为0的数,商不变。字母表达式里的C表示什么(相同的倍数)

  师:还有除数的性质

  知识链接:

  1.分数与除法的关系:b分之a=a÷b,b不等于0

  2.商不变的性质:a÷b

  =(a×c)÷(b×c)

  =(a÷c)÷(b÷c)【c≠0】

  3.除法性质的扩展应用:a÷b÷c=a÷(b×c)a÷(b×c)=a÷b÷c

  a÷(b÷c)=a÷b×c

  生:A除以B除以C等于A除以B乘C的积

  师:还有除法性质的逆运算,还有性质扩展。

  请同学们利用这些知识链接小组合作完成学习单上的第二部分内容

  老师巡视,抽取样本(独立完成时间:1分25秒。小组合作时间:3分钟)

  师:同学们想出验证方法

  生1:根据商不变性质验证(附:验证方法)

  师:说的特别好,为什么。没想打到你们验证出来,我在备课时想到一种验证方法,谁看懂老师的方法?结合每一步说一说运用了什么?

  指名回答

  师:分数与除法关系及除法性质应用这些步骤要为了说明什么?

  生:一个数除以另一个数等于这个数乘另一个数倒数

  (三)探究分数除法法则

  师:整数除以分数对分数除以分数同样适用。昨天和孟老师学习分数除以整数,今天学习分数除以分数,其实这些都是分数除法,所以算法及算理是相同。用一句话总结分数除法算法法则、

  生:除以一个数等于乘这个数倒数

  师:计算分数除法转换为分数乘法计算

  虽然我们只有一节课的缘分,但是你从我这里学习的不是有限的知识,而是学习数学的思想方法、习惯。我有一个习惯,把数学文字用哪个字母表达出来。现在请同学们用字母表达式表达分数除法的计算法则。

  生:a÷b=a×。

  师:对b做说明

  生:b不等于0

  师:我们接下来进行一场实战演习。指名读学习指南。老师巡视

  (学生完成时间:3分钟10秒小组讨论时间:5分钟)

  师:出示学生样本,请学生讲一讲填表过程

  生:根据除数特征填表,除数大于1,商小于被除数,除数等于1,商等于被除数,除数小于1,商大于被除数。

  师:解释一下字母表达式。

  存在疑问:

  1.只能用ABC表示吗?(任意)

  2.字母只能代表分数吗(分数,小数,整数)

  师:计算分数除法注意什么?

  生:除以一个数要变成乘这个数的倒数。

  师:总结:变-不-变(除号变乘号除数不变不除数变倒数变)

  这有一道题,说思路

  总结:小数,分数在一起,解决策略是什么?

  生:小数变分数

  三、课堂总结:不管计算加减乘除,先同意数的形式,再计算。

  你们不仅凭自己收获数学知识,还掌握数学方法思想解决策略。同学们你们太棒了!

  • 作文 >
    作文
  • 美文 >
    美文
  • 语文 >
    语文
  • 实用文 >
    实用文
  • 诗文 >
    诗文
  • 文学 >
    文学
  • 公文 >
    公文
  • 体裁作文 >
    体裁作文
  • 知道 >
    知道